5G无线通讯技术天线广泛应用系统

MIMO技术已经在4G系统中得以广泛应用。面对5G在传输速率和系统容量等方面的性能挑战,天线数目的进一步增加仍将是MIMO技术继续演进的主要方向。根据概率统计学原理,当基站侧天线数远大于用户天线数时,基站到各个用户的信道将趋于正交。这种情况下,用户间干扰将趋于消失,而巨大的阵列增益将能够有效地提升每个用户的信噪比,从而能够在相同的时频资源上支持更多用户传输。 

在实际应用中,通过大规模天线,基站可以在三维空间形成具有高空间分辨复用能力,改善接收信号强度并更好地抑制用户间干扰,从而实现更高的系统容量和频谱效率。大规模天线技术的研究内容主要包括:

 

 

(1)应用场景与信道建模

 

  大规模天线技术的潜在应用场景主要包括:宏覆盖、高层建筑、异构网络、室内外热点以及无线回传链路等。此外,以分布式天线的形式构建大规模天线系统也可能成为该技术的应用场景之一。在需要广域覆盖的场景,大规模天线技术可以利用现有频段;在热点覆盖或回传链路等场景,则可以考虑使用更高频段。针对上述典型应用场景,需要根据大规模天线信道的实测结果,对一系列信道参数的分布特征及其相关性进行建模,从而反映出信号在三维空间中的传播特性。

 

(2)传输与检测技术


  大规模天线的性能增益主要是通过大量天线阵元形成的多用户信道间的准正交特性保证的。然而,在实际的信道条件中,由于设备与传播环境中存在诸多非理想因素,为了获得稳定的多用户传输增益,仍然需要依赖下行发送与上行接收算法的设计来有效地抑制用户间乃至小区间的同道干扰,而传输与检测算法的计算复杂度则直接与天线阵列规模和用户数相关。此外,基于大规模天线的预编码/波束赋形算法与阵列结构设计、设备成本、功率效率和系统性能都有直接的联系。基于Kronecker运算的水平垂直分离算法、数模混合波束赋形技术,或者分级波束赋形技术等可以较为有效地降低大。规模天线系统计算复杂度。


发布于2020-11-02